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An average propagator of a disordered system 

V Samathiyakanitt 
Physics Department, Faculty of Science, Chulalongkorn University, Bangkok 5 ,  Thailand 

MS received 14 December 1972 

Abstract. The path integral of an average propagator which arose from Edwards’ model 
of an electron in a random system, is investigated using a technique employed by Feynman 
for the purpose of handling a polaron problem. The method consists of writing the average 
propagator as an expectation of the exponential of a correlation function. By expanding the 
exponential in a power series of the correlation function and considering the nth order 
moment, it is possible to evaluate the path integral involved analytically. The method is 
valid for general forms of correlation functions. 

An application of the resulting expression to a gaussian correlation function is made. 
In this case, an approximate result for the diagonal part of the average propagator is obtained 
explicitly. A discussion is given of an exponential correlation function and the possible 
implication to extended states is also mentioned. 

1. Introduction 

Edwards and Gulyaev (1964) first pointed out that by using the Feynman path integral 
formalism, it is possible to express the average propagator of a completely random 
system in a closed form (see also Lukes 1965, 1966). The advantage of using such a 
formalism is that the ensemble average can be carried out at the beginning. This is in 
contrast with the standard perturbation of the Green function where the ensemble 
average has to be carried out term by term. Also in this formalism, the fluctuating 
potential which plays an important role in disordered systems, is automatically built 
into the formalism. 

For a model of an electron moving in a completely random system containing dense 
and weak scatterers, the average propagator can be expressed as (Edwards 1970) 

G(Y, Y‘ ; f )  = N j D(path) exp (f, 1: L’(T) dr  - 4 i’ f W(v(s) - r(r’))  d.r dT‘ 
2h 0 0 

where p is the density of the scatterers and Wis the correlation function of the potential. 
Here the averaged potential energy is chosen to be zero. This model is, in fact, equivalent 
to that of Zittartz and Langer (1966) who considered an electron in a gaussian random 
potential. The equivalence was also pointed out by Halperin and Lax (1966) as a 
consequence of the central limit theorem. 

The correlation W, which characterizes the statistical properties of disordered 
systems, generally contains arguments defined at two different times. Formally W could 
be interpreted as a two-body interaction in the sense of many-body theory. Similar 
interpretation may also be given in the thermodynamic Green function formalism of 
disordered systems (Fischbeck 1972). 
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The actual form of W, in principle, must be determined from the potential V. For 
instance, if V is a screened Coulomb potential then W will be an exponential function. 
However, other forms of Wmay also be assumed such as a gaussian function (Burke and 
Lebowitz 1968, Bezak 1970). 

The average propagator given in equation (1) can be used to discuss many physical 
properties of disordered systems such as the density of states which is just the Fourier 
transform of its diagonal part, the localization problem (Freed 1972, Abram and Edwards 
1972) and wave propagation in random media (Chow 1972). 

Starting from expression (l), a number of different methods of evaluating the path 
integral have been published. Edwards and Gulyaev (1964) considered a model in 
which W is quadratic in coordinates, but local in time. This enabled them to evaluate 
the path integral exactly. Bezak (1970, 1971), on the other hand, retained all the non- 
local behaviour of the quadratic correlation function and thus was led to solving an 
integro-differential equation. Burke and Lebowitz (1968) assumed a gaussian correlation 
function from the outset and then applied the Feynman variational principle, obtaining 
a result which is essentially the first cumulant. Finally, Jones and Lukes (1969) showed 
that the path integral can be represented quite generally as a cumulant series. 

The purpose of the present paper is to investigate the path integral of expression (1) 
without assuming the specific form of W. The method consists of writing the average 
propagator as an expectation of the exponential of a correlation function and then 
expanding the exponential in a power series of W. Assuming that the Fourier transform 
of Wexists and employing a technique invented by Feynman (1955) for the purpose of 
handling a polaron problem, the path integral involved in the calculation can be 
evaluated analytically. 

Since the first application to polarons, this technique has only recently been applied 
to other problems, such as the diamagnetism of conduction electrons (Papadopoulos 
and Jones 1971) and the Coulomb potential problem (Goovaerts and Devreese 1972). 
Therefore, it is of interest to try and apply the technique to Edwards' model. In 0 2 a 
general method of evaluating the path integral of expression (1) is given. In 4 3 an applica- 
tion of the resulting expression to a gaussian correlation function is made, and in 9 4 
a discussion of the results is given. 

2. General method 

Equation (1) may be considered as an expectation of some time ordering functional, 

G(r, r' ; t )  = Go(r, r' ; t )  W(v(s) - r(r')) ds ds' 

where Go is the free particle propagator. The symbol ( ) denoted the expectation, is 
defined by 

J D(path) exp(+imh- Jb k2( r )  dr) exp(F[r(s)]) 
(exp(F[r(s)l)) = D(path) exp(4imh- kZ(r)  ds) (3) 

where F[r(s)] denotes a functional corresponding to 

- f f W(r(t)  - r(r')) dr  ds'. 
2h2 0 0 
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Thus equation (3) defines the moment generating function which generates all the 
moments : 

where Tis  the time ordering operator and pn is the nth order moment. 
This series may be rewritten as a series in the exponent (Kubo 1962) 

where K ,  is the nth order cumulant. Generally a cumulant of order n may be expressed 
in terms of moments of orders less than or equal ton.  The relation between cumulants 
and moments is given by Kubo, 

The meaning of the restriction is that the sum over all sets of number {a,}  must satisfy 
Xi ini = n. 

To evaluate the average propagator it is convenient to consider the nth order moment 
which may be written as 

p, = T [ - 6) dz, 1; dz; . . .I: dz, 1: d7; j D(path) W(r(z r) - 47;)) . . . 

x W(r(~,,)--r(~i)) exp 

(7) 
By introducing the Fourier transform of Wand rewriting equation (7) as 

where V ( k )  represents the Fourier transform of W and P,, the auxiliary propagator, 
is defined by 

J D(path) exp{ih- Jb (+d2(z)+f , ( r ) .  r(z))  dz} 
J D(path) exp{ih- Jb ($mkZ(z)) d7) 

Pn = 

In obtaining equation (9) we have used the fact that 
n I rr 

1 ki . ( ~ ( 7 ~ )  - r(ri)) = 
i =  1 

where 
n 

f,(z) = 1 ~ ~ , { S ( T - T ~ ) - ~ ( T - T ~ ) } .  
i = l  

Formally, P, can be expressed in terms of actions as 
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where S , ,  an action associated withf,, is defined by 

S ,  = (+mk2(z) +f,(z) . r(z))  ds 1: 
and S o  is the free-particle action. Because of the potentialf, . r ,  P, may be interpreted as a 
free particle acted upon by two sets of impulses with equal amplitude hk, , hk,,  . . . , hk, 
at two different sets of times zl, z,,. . . , z, and z;, z;, . . . ,(,. 

Since the action S ,  is linear in the coordinates the path integral can be evaluated 
exactly (see Feynam and Hibbs 1965, p 60), which after the integration only the classical 
path remains; the paths which deviate from the classical path are cancelled out in the 
numerator and denominator. The auxiliary propagator then becomes 

pn = ~ X P  - ( S c , n - S c , O )  9 (12) it 1 
where SC,, and Sc,o are the corresponding classical actions. 

This can be achieved by making a variation on the action S ,  which leads to 
In order to obtain a classical action, a knowledge of the classical path is required. 

where rc,, denotes the classical coordinate. On integrating equation (13) twice and 
assuming boundary conditions as rc,,(0) = r’ and rc,,(t) = r, a classical path is obtained 

(14) 

where H denotes the Heaviside step function. Upon partial integration and using 
equation (13), the classical action can be written as 

Substitution of equation (14) in equation (15) gives 

m(r-r’), ( r - r ’ )  h 2 k i .  k j  +-. hki (7 i - z i )+ fC-  { ( z i - z j ) H ( z i -  z j ) - (z i -z;)H(zi-  z;, 
2t t i = ,  i j  m Sc9n = 

As the classical action of a free particle is m(r-r),/2t, upon using equations (12) and 
(16), the nth order moment finally becomes 
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where 

= { ( r i - r . )H(s i - r j ) - ( r i  J -~))H(ri-r))-((t~-rj)H(r~-rSj)+(7~-T~)H(7~-r)) 

+ (5, - r ; ) ( r ,  - r ) ) j t ] .  

This result is general and can be applied to any form of correlation functions. We present 
an application in the next section. 

3. Application 

We now proceed by applying the above result to the case in which W is a gaussian 
function. For simplicity, we, shall limit ourselves to the density of states calculation since 
this will bring us to consider only the diagonal part of the average propagator. We take 
W of the form 

where L represents a characteristic correlation length of the disordered system. The 
Fourier transform of W is 

V(k) = exp( -+L2k2) 

Substitution of V ( k )  into equation (17), yields 

where [k , ]  and [T,] are the column matrices defined as 

and [B,] is a square matrix of order n with elements defined by 

If the sequences of time ordering are chosen such that T~ > 7; > r j  > T)? for i > j 
and r i  < r ;  < r j  < 51, for i < j then the matrix element of [B,] is simplified to 
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Since the distribution of the ki is a gaussian distribution, the k integration can be 
carried out (see Friedman 1956, p 105), the result being 

p, = ( - $ ) ‘ 2 ’ r 1 ! ~  1; dT, s,” dz’, . . . J:-’ dz, 1: dz; 
p i 2  

where det B, is the determinant of [B , ] .  

putting r = r’, equation (20)  reduces to 
As mentioned above, the interest of this paper is in the density of states, thus by 

p, = ( -&)‘n! 1; dz, [i’ dz‘, . , . dz, f^ dzA(det B , ) - 3 / 2 .  (21) 

This equation is. quite complicated, being a 2n fold integration. In order to obtain the 
main contribution, we assume that the matrix [B,] can be divided into two parts, the 
diagonal part [Z,] and the off-diagonal part [I?:]. Considering first the diagonal part, 
we see that the determinant of the matrix [Z,] can be written as a product of n first order 
determinants, which allows the nth order moment p, to be written as a product of n terms. 
The first order moment p1 is given by 

On carrying out the integration, 

and on summing up all the moments, 

P? G ( r , r ; t )  = G o ( r , r ; t )  l + p l + - +  . . .  = G o ( r , r ; t ) e x p ( p , ) ( 2 4 )  ( 2 !  

gives finally the first cumulant for the diagonal part of the average propagator. 
I t  is interesting to see the physical meaning of retaining only the diagonal part of [B,] .  

For this purpose, we consider two limiting cases of L. In the case of large L, as considered 
by Bezak, equation (23)  reduces to 

(25)  

This result is the same as that obtained by Bezak (1971, equation (48)), if we had defined 
the gaussian correlation function without the prefactor (nL2)-  312 .  For small L, equation 
(23) diverges. This divergence is well known as due to short wavelength potential 
fluctuations. 

To obtain the next contribution, the off-diagonal elements of the [B,] matrix must be 
considered. However, in this case the det B, is no longer written as a product of lower 
order determinants in a simple way. Instead of dealing with the determinant, we may 
use the identity 

Pt2 
= - 2 j i 2 z 3 ’ 2 L 3 .  

(det B,) -312  = exp( -3 Tr ln[B,]). 
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Then by writing 

the trace term becomes 

Tr ln[B,] = Tr ln[l,] + Tr ln(l + [I,] - [BA]), (26) 

where I is a unit matrix. The first term on the right hand side gives rise to the first order 
cumulant as discussed above. The higher corrections come solely from the second term. 
On expanding the logarithm of the second term in a power series of [B;], one finds that 
the first term of the expansion vanishes identically. The first correction term really 
comes from the second term of the expansion. 

Although, in principle, it is possible to write down all the higher order terms without 
difficulty, the integrations are very involved and no analytic results have yet been 
obtained. 

4. Discussions 

The path integral of a model disordered system introduced by Edwards has been 
investigated. In order to evaluate the path integral, we employed a technique invented 
by Feynman. Using this technique, it has been found possible to evaluate analytically 
the path integral of the nth moment which arose from the expansion of the exponential 
of a correlation function. The final result which is valid for general forms of correlation 
function is given in equation (17). 

For a gaussian correlation function, it has been shown that the ki integration can be 
carried out and that the result depends on only a set of time integrations. It is shown 
also that for the diagonal part of the nth moment, by selection of the diagonal element of 
the [B,] matrix, an explicit result is obtained which leads to the first cumulant in equation 
(24). The higher corrections can be obtained by considering the off-diagonal matrix [B;]. 

In considering the higher order correction to equation (24), the possibility of expand- 
ing the corrections in a power series of [E,] was discussed, but because of the time mixing 
in [B;], the full analytic treatment could not be carried through. It is noted that the time 
mixing term can be eliminated as suggested by Goovaerts and Devreese by considering 
the integral transform of the average propagator K = J drG(r, r’; t). However, in such a 
case information relevant to disordered systems will be destroyed. 

The procedure used in this paper is very similar in spirit to the works of Papadopoulos 
and Jones (1971) and Goovaerts and Devreese (1972). The only difference is that in this 
paper the functional F[r] contains an argument defined at two different times, whereas in 
the two other papers only a single variable is involved, and thus corresponds to consider- 
ing local potentials. In this respect the approach in this paper is more closely related to 
the original work of Feynman on polarons. 

The procedure used here has also been applied to the case where W is an exponential. 
Unfortunately, in this case no explicit result could be obtained for the diagonal part of 
the nth moment, even considering the diagonal element of [B,] .  However, explicit result 
for limiting cases such as the so-called small-time approximation and large-time approxi- 
mation of the first cumulant can be obtained. These two limiting cases could be used to 
obtain the density of states appropriate for band tail or band edge of the heavily doped 
semiconductors (Lukes and Rogers 1973). 
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Finally, we note that, the non-diagonal part of the nth moment in equation (20), 
might be useful for examining the delocalized state of Edwards’ model since in this case 
the symmetry of the system need not be broken (Abram and Edwards 1971). 
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